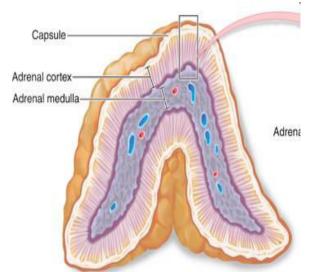
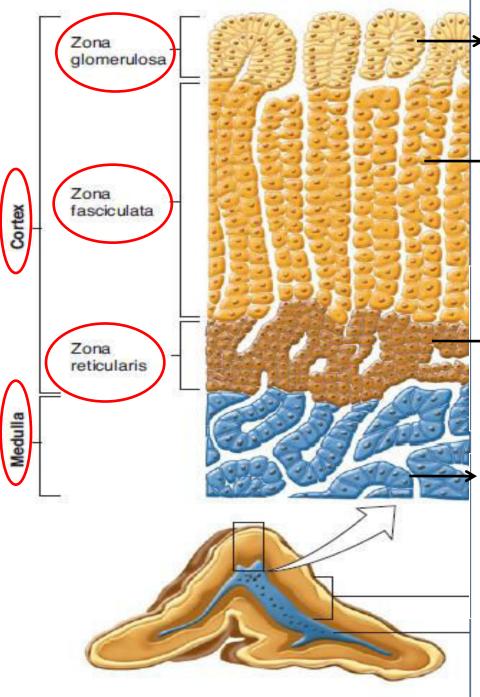

THE ADRENAL GLAND (cortex)


Objectives


- ⊙ The steps of adrenocortical hormone synthesis.
- Transport, metabolism and mechanism of action of adrenocortical hormones.
- The actions of adrenocortical hormones and the mechanisms regulating their secretion.
- Features of excess and deficiency of adrenocortical hormone secretion.

THE ADRENAL GLANDS (essential for life-stress gland)

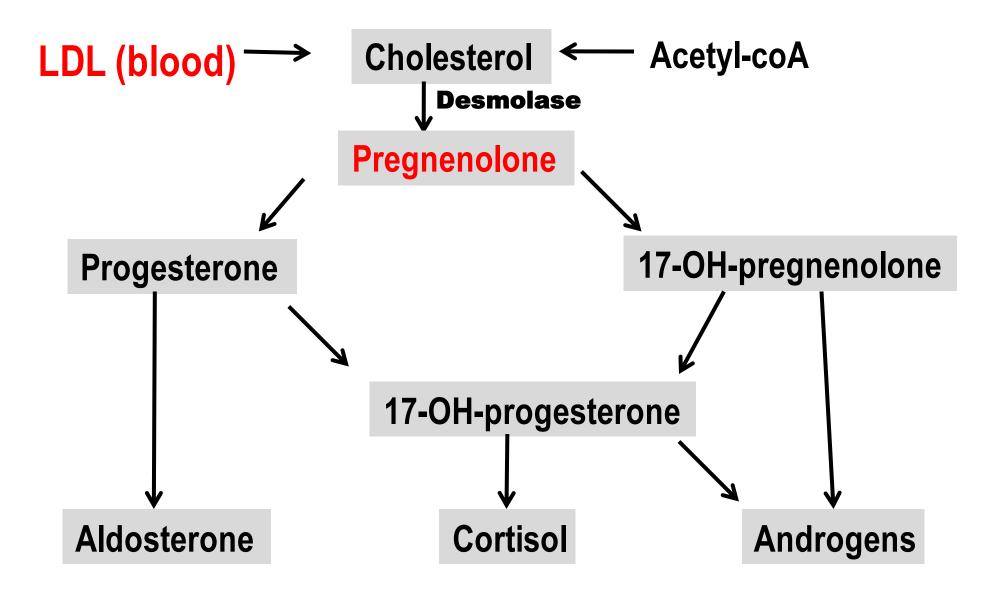
- Location: at top of the kidneys (suprarenal gland)
- Weight $\approx 4 \text{ gm}$
- Structurally and functionally \rightarrow 2 glands:
 - ∽ Adrenal cortex (72%)
 - Secrete corticosteroids
 - Essential for the life
 - ∽ Adrenal medulla (28%)
 - Secrete catecholamines
 - Not essential for the life
 - Modified sympathetic ganglion

Mineralocorticoids

Aldosterone

Glucocorticoids

- Cortisol
- 1/6th androgens

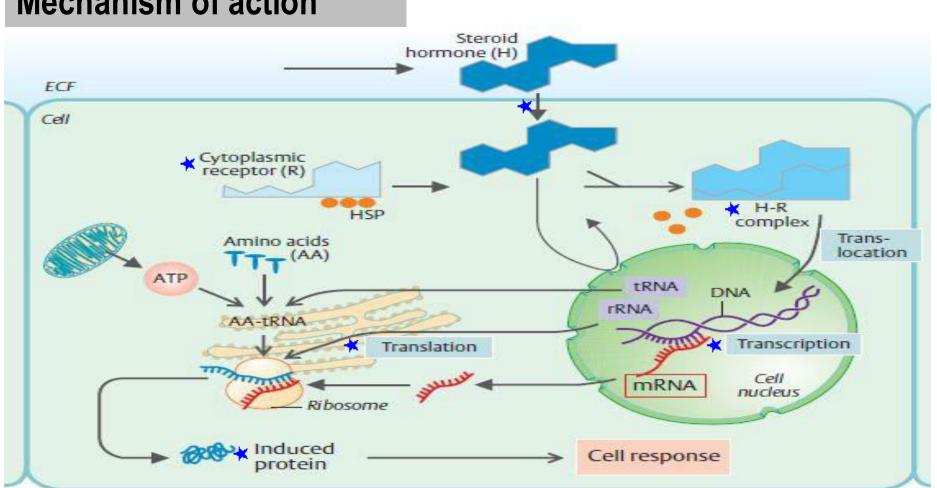

Androgens

- Dehydroepiandrosterone (DHEA) and androstenedione
 - 1/6th cortisol

Catecholamines

- Adrenaline (80%)
- Noradrenaline
- Dopamine

SYNTHESIS OF ADRENOCORTICAL HORMONES


Transport and fate of adrenal hormones

Transport

- Ocrtisol
 - Bound to plasma proteins (inactive) (90%)
 - CBG (Corticosteroid binding globulin) transcortin (75%) synthesis in liver stimulated by estrogen:
 - \bigcirc ↑ CBG (pregnancy)→↑bound → ↓ free →↑ ACTH →↑ cortisol secretion → normal free (↑total)
 - $ightarrow \ \mathsf{CBG} (\text{liver disease}) \rightarrow \downarrow \text{bound} \rightarrow \uparrow \text{free} \rightarrow \downarrow \text{ACTH} \rightarrow \downarrow$ cortisol secretion → normal free (↓total)
 - Albumin (15%)
 - Free (active) (10%):
- Aldosterone: 60% bound to CBG and albumin
 Metabolism
- In liver by conjugation with glucuronides.
 Excretion
- 75% in urine and 25% in bile then in the feces.

GLUCOCORTICOIDS

- Cortisol: very potent, 95% of all glucocorticoid activity
- Corticosterone: less potent, 4% of glucocorticoid activity
- Cortisone, prednisolone, dexamethasone (synthetic)

Mechanism of action

Effects of glucocorticoids

Permissive action (low level is needed)

- Gluconeogenesis by glucogon
- Lipolysis by catecholamine and GH
- Vasoconstriction by catecholamine and angiotensin II

Physiological action (normal level)

1) Metabolism

→ A.CHO (diabetogenic)

- Gluconeogenesis (↑ gluconeogenic enzymes)
- \downarrow Glucose utilization by muscle and adipose tissue
 - \downarrow Affinity to insulin receptors
 - \downarrow Mobility of glucose transporters
 - \downarrow Phosphorylation

B. Protein (extra-hepatic catabolism)

- Protein catabolism in bone, muscle and skin
- \downarrow AA transport into muscle and adipose tissue
- \uparrow AA transport into the liver \rightarrow Gluconeogenesis
- C. Fat (lipolysis and ketogenic)
 - Activity of lipase

2) Stress (Anti-stress)

- \uparrow Glucose and FA \rightarrow Energy
- Pressor effect (permissive)

3) Appetite

- Appetite (1 neuropeptide)
- \downarrow Appetite (\uparrow leptin)

4) CVS (maintenance of normal arterial blood pressure)

- ++ Inotropic effect ($\uparrow \beta$ receptors $\uparrow Na^+-K^+ATPase$)
- \downarrow Vasodilatation (\downarrow PG)
- Maintain blood volume (\downarrow vascular permeability)

5) Blood cells

- ↑RBC, ↑platelets, ↑neutrophils (↓function)
- \downarrow Eosinophils, basophils & lymphocytes

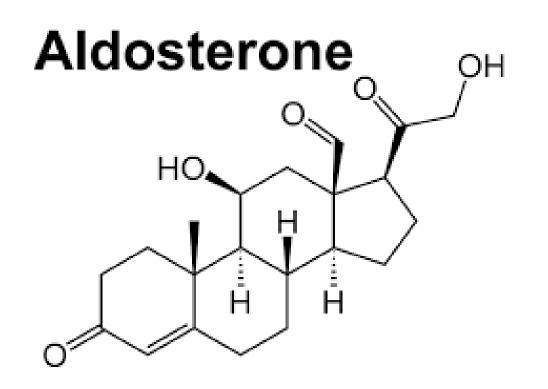
6) CNS

- Modulate behavior & mood of individuals (euphoria)
- \downarrow REM sleep, \uparrow awake time

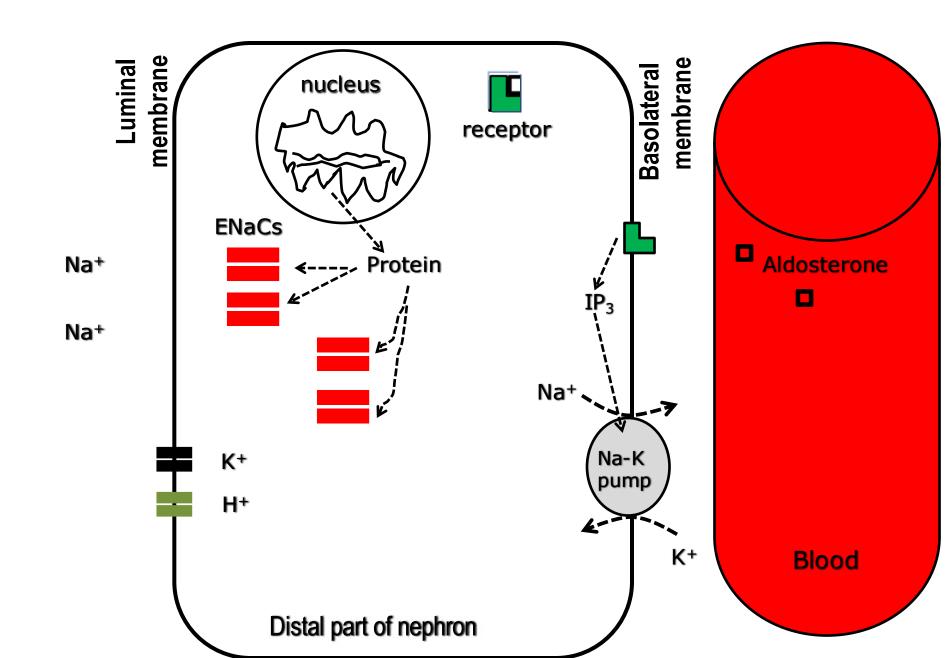
7) Other effects

- Slight mineralocorticoid effect
- Maturation of surfactant
- ↑ Gastric HCI

Pharmacological action (high level)


- 1) On bone (osteoporosis)
 - \downarrow Bone formation (\downarrow osteoblast, \downarrow collagen, anti-vitamin D)
 - A Bone resorption
- 2) On CT
 - \downarrow Collagene synthesis
 - \downarrow Fibroblast
- 3) Anti-inflammatory
 - Stabilizes lysosomes, inhibits phopholipase A₂
- 4) Antiallergic
 - \downarrow Histamine release
- 5) Immunity and lymphoid tissue
 - \downarrow Cellular immunity (\downarrow T lymphocytes)
 - \downarrow Humoral immunity (\downarrow Ig)

Regulation of cortisol secretion Stress Circadian rhythm Hypothalamus **CRH** Anterior **Pituitary gland** (-) ACTH **Cortisol Adrenals**


75% of daily production of cortisol occurs between 4 AM and 10 AM

THE MINERALOCORTICOIDS

- Aldosterone: very potent, 90% of mineralocorticoid activity
- Deoxycorticosterone: less potent, 1/15th aldosterone potency
- Corticosterone, cortisol, cortisone: slight activity

MECHANISMS OF ALDOSTERONE ACTION

Actions of aldosterone On kidney

Distal parts of nephrone (DCT, collecting tubule and collecting duct)

- Luminal membrane: ¹Na⁺ reabsorption (epithelial sodium channels-ENaCs) in exchange with K⁺ or H⁺
- Baso-lateral membrane (¹Na⁺-K⁺ATPase)
- **On colon (**distal colon)
 - ↑Na⁺ reabsorption
- On glands (sweat glands and salivary glands)
 - ↑Na⁺ reabsorption